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CONTROLLING BIAS IN OBSERVATIONAL STUDIES :
A REVIEW!

BHorvard Univcersily
and
DONALD B. RUBIN®
Bducational Testing Service and Princeton University
SUMM ?1‘358?%& different methods of matched
tampling and statisties! adjustmant, alone and in combinetion, in redusing biss dus to confounding =-
varisbles when compering two populstions. The adjustessut methods were linsar regression edjustznent
for = contiamous end direot stendecdisstion for w eategorisal. .
ﬂ.ﬁugﬁilgigggvﬁickP
purallal and non-parallsl, monotonio non-lineer parellsl Eiii varianoss of =, end
E.‘!&!ﬂligi!

sion, wdjortment on matehed sampley the saoet robust method. Several different ..3.3.3.!1!6 mggested
foe the oame of muitiveristy 3, oo which little or no work has been dome.

1. ImrrovpvOTION

An g-«ﬂh differs from an experiment Bgnro_.-bmb m eesign-
ment of treatments (i.e. agents gﬁ!ﬂoﬁmﬁgvs vnite is absent. As has been
pointsd cut by many writers sinoe Fisher (19 ver—.geg a powerful tool
nggggomgsg random. If randomization is abeent,

t is virtually impoesible in many peactioal circumstances to be convinoed that the
E%»&og&.gﬁsﬁggi This follows beosuss
other varisbles that affect the dependent varisble besides the treatment may be
m?ﬂ& distributed acroms treatment groups, g&i&ﬂgaegg

is confounded by these extraneous z-varisbles.

91335 choios between an observational study and an essentially squivalent
resndomized oxperiment one would prefer the experiment. Thus in the Réeport of
the President’s Commisaion on Federal Statistios (1971), Light, Mosteller, and Winokur
urge greater effarts t0 wee randomined studies in evaluating public programs sand in
social experimentation, despite the prictical diffiéulties. Often however, random
g ent of treatments to units is not foesible, as in the studies of the effects of
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doses of radiation on uranium mine workers. Also, as in these examples, one might
have to wait many years for the results of an experiment while relevant observational
data might be at hand. Hence, slthough inferior to sn equivalent experiment, an
observational study may be superior to or useful in conjunction with & marginally
relevant experiment (e.g. one on the long-term effects of radiation on white rats).
In addition, the analysis of data from obeervational studies can be useful in isolating
those treatments that appear to be successful and thus worth further investigation by
experimentation, as when studying special teaching methods for underprivileged
children.

In dealing with the presence of confounding variables, a basic step in plaoning
an observational study is to list the major confounding variables, design the study
to record them, and find some method of removing or reducing the biases that they
may cause. In addition, it is useful to speculate sbout the size and direction of any
remaining biss when summarizing the evidence on any differential effects of the
treatments. '

There are two principal strategies for reducing biaa in observational studies.
In matching or matched sampling, the eamples are drawn from the populations in
such a way that the distributions of the confounding variables are similar in some
respects in the samples. Alternatively, random samples may be drawn, the estimates
of the treatment being adjusted by means of a model relating the dependent variable
y to the confounding variable zz When y and z are continuous, this mode! usually
involves the regression of y on 2. A third strategy ia to control bias due to the z-vari-
ables by both matched sampling and statistical adjustment. Notioe that the statisti-
cal adjustment is performed after all the data are collected, while matched sampling
can take place before the dependent variable is recorded.

This paper reviewa work on the effectiveness of matching and statistical ad-
justments in reducing bias in a dependent variable y and two populations P, and P,
defined by exposure to two treatments. Here, the objective is to estimate the dif-
ference (r,~7,) between the average effects of the treatments on y.

Section 2 reviews work on the ability of linear regression adjustment and three
matching methods to reduce the bias due to z in the simpleat case when both y and 2
are continuous, there are parallel linear regressions in both populations, and z is the
only confounding variable. Section 3 considers complications to this simple case :
non-parallel regressions, non-linear regressions, errors of measurement in z, and the
effect of an omitted confounding variable. Section 4 extends the above cases to in-
clude x categorical or made*categorical (e.g. low, medium, high). Section § presents
some multivariate x results which are simple generalizations of the univariste z results.
Section 6 considers some multivariste extensions of matching methods. A brief
summary of the results and indications for further research are given in Section 7.
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3. ¥, T CONTINUOUS : UNIVAMATE PARALLEL LINBAR RNGRESSIONS

2.1. The model. We begin with the simple oase whon y and a univariste
z are both continuous, and the regressions of y on z are linear snd parallel in both
populations. Far the j-th observation from population i, the model may be written

Yy = p+Pleyg—w)tey .. (8.1.1)
with i Bleylmg) =0, Ee|zy) =
whero 4 and 4 are the means of y and  respectively in population ¢, where ¥, > ¥,
without loss of generality. Thus the regrossions of y on = differ by the constant
< Wyy— oy | 21y = 2yg) = (I — )P — ). e (8.0.2)
If ® is the only vacisble (besides the t.mtmem) 'thlt sffeof.a y and whose dnmbutxon
differs in the two populations, (2.1.3) equals the difference in the aversge effects of

the treatmeuts, 7,—7,. Thus, in t.lmouo. thatreotmmtdiffmoom (2.1.2) is con-
stant at any level of ».

Fro:n(tll)ltfoﬂomthst@dmomnymthonlwofammumplu chosen

either randomly or solely on =z, i i o ‘-
B y) == (o) P2, — 1)~ A= 0)
= 7, — Ty + (B —2y). o (3.01.3)
Letting E, be the expectation over the distaibution of varisbles in randoin samples,
B, — ) = m—py=ni— T4+ Fl— ") L e (3.014)

50 that the expeoted biss in (§s— ) from random ssmples s Ay, —¥).

23. Linear regression adjusiment. Since from (3.1.3) §,—¢, is conditionally
bissed by an amount 2(2,—2,) in random and matched samples, it is reasonable to
adjust §; —§, by subtracting an estimats of the biss. The adjusted estimate would

then be . .
=Ty = () —B(3,—=y).

In practice, 8 is mo;t commonly estimated from the pooled within-sample regressions.
With this model, however, B(B) = 4 either for the pooled § or for § estimated from
sample 1 or sample 2 alone. From (3.1.3) for any of thewo f,

Bo(#,—7y) = -Pl—.h"’('?_.ﬂ.l) e T)~Ts.

For this model, themgmonsdjmtmentmmmdlthobiu either for andom samples
or for matched samples selected solely using z.

Before using the regredion adjusted elhmnte. the mvuhga.tm should satisfy
himeelf that the regrossions of y on @ in the two populations appoar linear and parallel.
Standard methods of fitting higher order terms in x-and separate £’s in the two samples
are appropriate for helping to answer this question.
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In presanting results on the percent reductions in biss for = normsl (Table
2.3.1), we have taken .

o = aViol+oh)2

where a = 0.2(0.2)1.0. Strictly, the results hold for B < 0.5 but for B between
0.5 und 1, the percent reduotiona are only about 1 to 1}% lower than the figures shown.

TABLE 23.1. PERCENT REDUCTION IN BIAS OF s FOR CALIPER
MATOHING 10 WITHIN +eV(si+ohj3 WITH = NORMAL

o oljef = § ofjed =1 . otjef =2
0.3 " . .
0.4 ™ 8 K
0.8 -0 - e
0.8 .. . ”
1.0 .78 .74 .0

A tight matohing (4 = 0.3) romoves practioally all the biss, while » loose matohing
(6 = 1.0) removes around 76%. The ratio o}/o] has & minor effect, dthongbper
f«mmekcomwhntpomud/u{inm-

A dissdvantage of celiper matching in practical use is that unless r is guite
large there is & non-negligible probability that some of the desired » matches are not
found in the ressrvoir. Nothing seems to be known about the distribution of the number
of matches found as a fonotion of r, a, (y,—m,) and o}jo}. We have not investigated
the consequences of incomplete matching as often results in practice. Thus we have
no help to give the investigator in estimating the reservoir sise needed and the prob-

able percent success in finding osliper matches.

2.4. ‘Nearest available’ maicking. This dissdvantage is avoided by » method,
(Rubin, 1973e), in Which &% Dair matches are easily formed by computer. The »
values of z from sample 1 and the ra values from reservoir 2 are entered in the computer.
In one variant of the method, the sample 1 values of 2 are first arranged in random
ordor from 2y, to z,,. Starting with z,,, the computer selects the valus z,; in reservoir
2 nearest to z;, and lays this pair aside. The computer next sceks s ‘nearest avail-
able’ pertoer for z,, from the (rs—~1) remsining in resegvoir 3, sud so on, s0 that »
matches are always found althongh the value of a is not controlled.

Two other variants of thia ‘nearest available' method were examined. In
these; the muembers of sample 1 were. (;ﬂut ranked from higheat to lowest, (i) firet B
ranked fronr lowest: to highest, before ummuhu from the ranked sauipies; o e
7, > %5 Monts Carlo results with 2 normal #howed that for the percent reductions *
0 in bias of (2,—2,), Org > Open > Oms. If, however, the quality of the matches is
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judged by the average MSE within pairs, Eu(2,s~2s)%, the order of performance was
opposite : MSE,, < MSE,,, < MS8E_yz. Both sets of results have rational expla-
nations. The differences in performance were ususlly smail. On balance, random
ordering is a reasonable compromise as well as quickest for the computer.

For random ordering, Table 2.4.1 shows the percent reductions in bias of
(2,—2,) and hence of (§,—7,) for r = 2, 3, 4, » = 25, 50 and different combinations
of the initial bias B and the o%/o} ratio. Results for n = 100 (not shown) differ
by at most one or two percentage points from thoso for n = 50, suggesting that the
% = 50 results hold also for » > 50. With this method, the percent reduction in
bias decreases steadily as the bias B inoreases from 1/4 to 1, 50 that results are given
separately for the four values of B.

As regards the effect of of/0}, mstabing does best when o}/o} = § snd worst
when o}/0f = 2. This is not surprizing. Since %, > 9, the bigh values of sample
1 (the ones most likely to cause residual bias) will receive less bissed partners when
o} > o}

The investigator planning to use ‘nearest available’ matching can estimate
B and of/o} from the initial data on z. Knowing the value of 7, he can estimate
the expected percent reduction in bias under.n linear regression from Table 2.4.1.

TABLE 2.4.1. PERCENT REDUCTION IN BIAS FOR RANDOM ORDER,
NEAREST AVAILABLE MATCEING: » NORMAL

oo} = ¢ alle =1 oflos =2
1 1 3 1 T3 1 1 3
B = ! .. = — . . 1
™~ i > 4 ! s £ 4 ! ol
2 97 94 8y su 87 82 75 08 63 00 56 48
*3
'“‘ 399 9 971 93 % 91 S8 81 M 72 81 81
€ 4 09 99 99 97 028 95 92 38 81 79 70 08
gt Y W 8w P2 87 18 09 66 G0 53 5l
13 100 o9 w9 97 98 98 01 34 ™ 5 69 63
[ 3
4 100 100 100 9 98 97 94 89 6 81 5 1

A measure has also been constructed (Rubin, 1973a) of the closences or quality
of the individual pair matches. If pairing were entirely at random, we would have

Epa(#yy—245) = (0{+0'§)+(’h—_-’h)z
= (o} +oY)(1+BY2).

Consequently the quantity
100E y(y9— %y3)*/ (0 +03)(1 + B*/2)
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was chosen as the monsure. Since results vuyhtﬂowlthn,onlythwefwsaso
ave shown in Table 2.4.3.

TABLE 2.43. VALUES OF 1008 {3y ~ =y, (et +03)(1 4 B%/2) FOR NEAREST
AVAILABLE RANDOM ORDER MATOHING WITH & NORMAL

oljel = § oficf = t otjof = 3
1 1 a 1 1 3 1 1 3
A S T S S SR SR R S
2 0 3 8 3 s 18 7 13 20 128
o o0 o 1 1 s ' 8 13 18
¢ 0 0 0 1 s 3 s I ¢ ]

Except for o}/o§ = 2 and B > ¢, random ordering gives good quality matches.
In faot, since the computer program (Rubin, 197%) for constructing the matched
Pairs is very speedy, the investigator can try randows, high-low, and low-high ordering.
By examining (2,—2,) and Z(x,;—2,/)%/n for each method, he can select what appears
to him the best of the three approaches. :

2.5, lmmauhmq Formmvmﬁwwhohmhmtedmmmwhng
and is oonfident that th the regression is linear, a mean-matching method which conoen-
trates on making |2,~2,| stoall has been discuesed (Greenberg, 1853). The following
simple computer method has been investigated (Rubin, 1973). Caloulste Z;. Seleot,
from reservoir 3, the ®,, closest to 2,, then the xy sush that (g, -+-2,)/2 is closest to

C:.mdwonunhluhsvobmnleohd For n = 50, Tablo 2.6.1 shows the percent
reductions in bias obtained.

TABLE 2.8.1. PERCENT REDUCTION IN BIAS FOR MEAN MATCHING :

z RORMAL
ofiod = } ofjef e 1 ofjelm 3
-1 1 3 11 3 1 1 3
8= ¢ 3 3 ! i 3 & ! « 38 3 !
T 100 100 9% & 100 0 01 T 1006 95 82 67
2 100 100 100 100 100 100 99 06 100 100 97 8¢

4 100 100 100 100 100 100 100 100 100 100 100 98

Exoept in » fow diffioult oxses, partioularly B = 1, this method of mean match-
ing removes essentially all the biss. So far sa we know, mesan matching is seldom
used, presumsbly beosuse it relies heavily on the sssumption that the regression is
linear. With a monotone non-linear regression of y on z, one might speculate that mean
matching should perform rough'y as well as & linear regression adjustment on random
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samples. But with the regression adjustment, one can examine the relations between
y and z in the two samples before deciding whether a linear or non-linear regression
adjustment is appropriate, whereas with mean matching performed before y has been
observed, one is committed to the assumption of linearity, at least when matching tho
samples.

- 3. COMPLICATIONS
3.1.  Regressions linear but not parallel. For i = 1,2, the model becomes
- - - Yo = p1+Fe(xyg—m)+ey. .. (3.1.1})

It follows that for a given level of z,
Ef(!hl".’/d”"-;( =Ty "f} = l‘x"/‘:—/’jg”1+_ﬁ:l’f:+(ﬂx‘ﬂ:)ﬁ" e (3.1.2)

If this quantity is interpreted as measuring the difference in the effects of the two
treatments for given z, this difference appears to have a linear regression on r. At
this point the question arises whether a differential treatment effect with z is a reason-
able interpretation or whether the (8, —#.) difference is at least partly due to other
characteristics (0.g., effect of omitted z-variables) in which the two populations differ.
With samples from two populations treated differently, we do not see how this ques-
tion can be settled on statistical evidence alone. With one study population P, and
two control populations P,, P, both subject to 7, a finding that B, and B; agree
closely but differ from 8, leans in favour of suggoating a differential effect of (7,—7,).

As it happens, assuming « is the only confounding variable, this issue becomes
less crucial if the.goal is to estimate the average (1, —7,) difference over population 1.
Lihe-goo’ 18 el 2
From (3.1.2) this quantity is

E\(1y—7s) = (pby—1ta)—Bo(M— ) e (3.1.3)

Since from random samples,
Er(§1— ) = py—1te we (31.4)
the initial bias in f,(9,—»,). With sainples matched to a random 2,,
.  Em(gi~is) = py—p2— PrFim(Ze)+ A0,
so that the reduction in bias is
Er(§,—Fs)— Em(§r— 1) = BoEm(Z2)—1].
Hence the percent reduction in bias due to matching remains, as before,
L00{Em(xs)—ne) /(11— 1)
80 that previous results for ‘mnwhing apply to non-parallel lines also with this estimand.
As regards regression adjustment, it follows from (3.1.3) and (3.1.4) that
Eol(§.— 72) —Bol2,—~25)] = (s~ 3)—Falmi~m1) = By —=T,).
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‘Comsequently, in applying the regression adjustment to random samples,
use of the regression coefficient caloulated from sample 2 provides an unbiased esti-
mate of the desired E,(r,—7,). This property was noted by Peters (1041), while
Belson (1988) recommended the use of B, in comparing listeners (P,) with non-listeners
(Py) to & BBC television program designed to teach useful French words and phrases
to prospective tourista.

" With Ey(r,—,) aa the objectivo, the standard use of the pooled By in the
regression sdjustment gives bissed estimates, though Rubin (1970) has shown that
‘nearest nvailable’ matching follgwed by regression adjustment greatly reduces this
biss. With matched samples, the standard estimate of 2, following the analysis
of covariance in & two-way table, is B4, the sampls regression of matched pair differ-
enoes, (¥,5—¥yy) On (Z,9—2y). Curiously, the Monte Carlo computations show that
use of B, on matched samples performa better than use of B4 in this case.

If non-parsllelism is interpreted ss due to a (r,—7,) difference varying linearly
with z, the question whether E,(r,—7,) is the quantity to estimate deserves serious
consideration. To take a practice sometimes followed in vital atatistios, we might
wish to estimate (7,—7,) averaged over & standard population that has mean y, dif-
fexing from 9, and %,. The estimand bpoomes, from (3.1.2)

Bu(ry—Ty) = py—pig+Brlte— 1) —Bulta—1)-
From random samples, an unbissed ragression estimate is
@1 — G2 +Bre—2,)—Bylma~2,) e (3.1.8)

where 8, and B, are the usual least squarcs estimates from the separate regressions
in the two samples.

Alternatively, partioularly if B, and B, differ substantially, no single aversge
of (1;—7,) may be of interest, but rather the values of (,—7,) at each of a range of
values of z. As & guide in forming a judgement whether use of a single average dif-
ference is adequate for practical application, Rubin (1970) has suggested the following.
Suppose that in the range of interest, x lios between x, and z;. From (3.1.2) the
estimated difference in (7, —7,) at these two oxtremes is

(By—By) e —axv). . (3.0.8)
From (3.1.5), the average (r,—7,) over the range from zz to xx is estimated as
(¥1~9) +3;(’-51)—-3#—=.) where 2 = (z,.-;{zg)/z. . (317

The ratio of (3.1.6) to (3.1.7) provides some guidance on the proportional error in using
simply this average differemce.
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If it is decided not to use the average difference, the differences (r,—7,) for
specified z can be estimated by standard methods from the separate regreesions of

y on z in the two samples.

To examine the relation between (7, —7,) and z from pair-matched samples,
it is natural to look at the regression of (y,s—y,s) on 2.5 = (zy+x.)/2. However,
from the models (3.1.1) it turns out that '

B{{y1—yy)m|E 5 = z) = (y—tt3)— B + B+ (Pr—Be)2.3+(By+ ) E(dy | 2.4 = x)

where d; = (z,y—zy)/2. With g, # 7, or ot # of, it appears that E(dy| 2.y < z) # 0,
8o that this method does not estimate the relation (3.1.2) without bias. The bias ahould
be unimportant with tight matching, but would require Monte Carlo investigation.

3.2. Regression non-linear. Comparison of the performance of pair-mstcbing
with linear regression adjustment is of great interest here, sinoe this is the situation
in which, intuitively, pair-matching raay be expected to be superior. Use of both
weapons—linear regression on matched samples—is also relevant.

Monte Carlo comparisons were made, (Rubin, 1973b), for the monotonic non-
linear functions y = e** and e** and the random order nearest available matching
raethod described earlier in Section 2.4. In such studies it is hard to convey to the
reader an idea of the amount of non-linearity present. One measure will be quoted.
For convenience, the Monte Carlo work was done with 9, +», = 0 and (¢} +03)/2= 1.
Thus in the averago population, z is N(0, 1). In this population the percent of the
variance of y = ¢ %% that is attributable to ita linear component of regression on z is

100a'/(e°’-—1). For a = 4 }, & 1. reapectively, 12% and 41% of tho variance of
y are not attributable to the linear component. From this viewpoint, y = e** might
be called moderately and y = ¢** markedly non-linear.

With regression adjustments on random samples, the regression coefficient
used in the results presented here is 85, the pooled within-samplea estimate. With
regression adjustments on mstched samples, the results are for ﬂ;, a8 would be custo-
mary in practice. Rubin (1873b) has inveetigated use of B,, B,. By and B¢ in both
situatione. He found B, in the unmatched case and B4 in the matched oase to be on
the whole the best choicea.

The results were found to depend markedly on the ratio o3/s;. Table
3.2.1 presents percent reductions in bias for o}/of = 1, the simplest and poesibly
the most common case. Linear regression on random samples performs admirably,
with only a trifling over-adjustment for y — e*%. Matohing is inferior, particularly
for B > §, even with a reservoir of size 4n from which to seek matches. Linear
regression on matched samples does about as well as linear regression on ran-.om
samples. Results are for A = 50.

Turning to the case o}/of = § in which better matches can be obtained,
10te first that linear regression on random samples gives wildly erratic results which
call for a rational explanation, sometimes markedly overcorreoting or even (with
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, B = } for ¢3) greatly increasing the ‘original biss.* Matohing alone does well, on the
average about as well as with o linear relation (Table 3.4.1) when of/of = §. Linear
regression on matched samples is highly effective, being slightly better than matching
alone,

TABLR 2.3.1. PERCENT REDUCTION IN BIAB OF Xi.l 1);

s NORMAL
. " . L] . - .
ceww D e e et e mea h'. .N. o e . areme e —— !...!.lhl m .
roethod® P A get g o SR gt g e
2 100 100 101 101 01 101 108 108

M T 3 W O™ 186 U M & s
"3 0 106 MW M T W % 100

4 94 100 8T 100 o8 9 84 100
au 3 o 108 100 108 18 100 108 101
3 100 101 100 108 100 100 102 101
4 100 101 100 los 100 100 181 101

B m . . Be=1
sasthod v e oWl o o on gea g
B L1801 101 104 104 108 108 108 108
M 2 6 81 47 9 o5 13 N 9
9 L] 2 70 o3 [ 97
4 87 . 1% 10 M 08 & o
BM 2 108 »

110 100 104 ) :.u ”»
S 103 09 106 100 108 100 108 100
4 101 100 108 100 102 100 106 99

*R gfiiiiﬁ!ﬂig
M dendtes ‘nearsst available’ matching.

BM ;Iiistiﬁz
éiiggiegﬁfg st Copsider ¢*. Its mesn
cl_lo—avo!._-lal t?ﬁ?-. %.I.UI.. with 9, = m?ll» cuﬂ !-.n ., the ioitial Wims

..I&lu.nl_l#V Ew#?&n‘.ﬁ.i?iiz—l .

ggl«‘lgi.&g For B = {, the initial biss is positive bet snell, 5o thad regremion

greatly overcorreots, giving 3929 redustion. m.smlm 1, the initial Heses are lerger and the over-
oo-.-do&olno t 80 sxtrema (1709, 139%).

L




SANKHYA : THE INDIAN JOURNAL OF STATISTICS : Szaizs A

With of/o} = 2 (Table 3.2.3), linear regression alone performs just sas errati-
cally as with of/of = }, the results being in fact the same if %% is replaced by e-**.
As expected from the resujts in Section 2.3, matching alone is poor. In most cases,
regression on matched samplee is satisfactory, except for failures with ¢~*/* and ¢~*
when B =} or §.

TABLE 3.22. PERCENT REDUCTION IN BIAS OF y
{(0ifod = $, THE EASIER CASE FOR MATCHING); z NORMAL

1
B=2 2

method " sl g-g% oz P ol At P
48

R 208 63 -20¢ 48 80 208 72
M 3 9 99 108 100 @ 90 93 9
3 0 100 108 100 98 100 94 100
¢ 00 100 108 100 9 100 97 100
RM 2 102 100 08 100 101 100 108 100
3 100 100 100 100 100 100 101 101
4 100 100 100 100 100 100 100 100

method r ol 488 P om s s s

R 123 90 170 88 113 66 139 102
M 2 89 06 86 o8 70 91 a9 96
3 97 100 94 100 94 98 90 9
4 98 100 97 loo 97 99 1w
/M 2 103 9 118 100 106 99 118 99
3 100 100 10% 100 9 89 106 100
4 100 101 101 100 101 100 102 100

3.3. Regressions parallel but gquadratic. Some further insight into the per-
formances of these methods is obtained by considering the model

* ¥ = Tt Pry-+dzytt-ey. .. (3.3.1)
It follows that
Ee(§y—Fa) = (1y—72)+B(2y—2,) +8(2} — 23)+ &(s7— o) . (3.3.2)

where sf = I (zy—2()*/n. Hence the initial bias in random samples is, unoondi-
tionally, -

(M —ne){B+ 80+ 14)]+ (01 —0}) .. (3.3.3)

= (9, —ny)f+8ol—a3) .. (3.3.4)
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' TABIE .3.38. PRERCENT REDUOTION IN BlIAS OF y .
(0%fof = 3, TEE RARDER CAYE FOR MATOHING); « NORMAL

M
ml!ml r en ge8 g «* ot gl g [
) T e 298 48 —004 0 14 1 39
x 1 4 I 38— s 81 0 128
3 06 120 Si—4s - 89 & IN
. 4 0 1 s .1 “ M 4 18
B s e m e iaei i e m
.3 %1 -3 100 108 106 147 o
¢ 96 M0 - 5 18 107 104 168
- , '_,.% : , ’_1 .
method £ R B g g PR e g e
R % 123. 88 170 98 113 108 1
.M 1 &% T n oW N 61 18 8
$ 8 85 ¥ N 4 ™ N =n
' © .4 ® & 4 10 00 % » %
T $ 106 103 13 115 106 99 187 104
C 2 108 108 i s 10 100 e a0e
4 108 01 11 9T 108 89 110 108

where without loss of generality we have mumodq‘-l-"q,so.’

Even though y, > 9,, if 8 > 0 (as appropriste for the positive exponentisl funation)
(3.3.4) shows that if o} < o}, the initial biss might be small or even negative. This
mymdiootowhymomﬂomnlhappoumthpmtmdutmmhumthm

linear funotioms.
¥rom (3.3.3), the remaining bias in matohed ssmples is .
(1:—'-(%»[.34-0(1;-{-'&(':”]+3{0'—l-(¢§)} o (3.3.5)

Thmdmwhmﬁmlmphmmw'aﬂmmhd The
ﬁmwmmgguhthntmthhomﬂnpermtmdmmhn-houlduppmnmb
that for parallel-lincar regressions if [4/4] is amall. For example, let 0f < of =1
and 8 be the peroent reduction in biss for y linear. From (3.3.4) and (3.3.5), the
pmtwducﬁminbiuforyiundmﬁoworhont&ppmximmn

~(100-6) 5 8 9= Baizg] = 6 [1"‘7(1"‘ 130) B]
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For regroasion . ad]ulted estimates on random umpkl, EB;) may be
expressed as .
‘1+2314 a(k,y, +
xe(ﬂ,)= B+ l‘JT—w ] —‘-‘:,Al“ S
where Ky — Zh:g—_zc)Tjn l;the' sample third moment. From (3.3.2) it follows that
the residual bias in the regression adjusted estimate on random ssmples is ocondi-
tionally .
= Eel(§,— §2)—Ba(Z1— 29— (11— Ts)

= 6(:?4{1)4-6(:.-'-:_,) [g_;:,+z.)— 2—"—‘5‘—5—'5)] — 82, —Z5) (kg + g [(41 +03).

For & symmetrio or near-symmetric distribution of z in both populations the third
term becomes unimportent. The first two terms give

T M=l —(m -2 )Mol Hah).

- —— a4 — | —— e —¢

The average ‘reaidual bias in large random nmpleo after rograuwn ad]untment is there-
fore, for x symmetric and (0} +4-0})/2 = 1,

e detee (1= B,

This formula suggeats, as we found for x4, that with & symmetric z and o} = of,
linear regression adjustment in random samples should remove essentially all the bias
when the relation between y and z can be approximated by a quadratic funotion.
The further indication that with o} # of the residual bias is smaller abeolutely as
11—, increases towards 1 is at first sight pugzling, but consistent, for example, with
the Monte Carlo results for e*/* and ¢* when a%/0 = 2 in Table 3.2.3.

__To summarize for the exponential and quadratio relationships : If it appears
that of =~ ¢} and » is symmetric (pointa that can be checked from initial data on -
z) linear regression adjustment on random samples removes all or nearly all the bias.
Pair matching alone iv inferior. Generally, regression adjustment on pair-matched
samples is much the best performer, although sometimes failing in extreme cases.
An explanation for this result is given in Rubin (1973b) but is not summarized here
because it is quite involved. Further work on nd;untment by quadratic regreasion,
on other curvilinear relatlona. snd on the cases o"/a’ = 2 ) —;— would be informative.

Before leaviog the problem of non-h.nea.r regressions, we indicate how the above
results-can ‘be extended to non-linear response surfaces other than quadratic. Let

vy = : 14-+g(%ey) ey

where g( ) is the regression surface. Since By may be written as EZ(W—W(W—‘W)/
)'.‘.Z(xu-—i‘t)- the limit of B, in large random samples is

(covy(x, §(x))+vova(z, g(z))}/[var,(z)+ver,(z)]
430
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where covi and var; are the covarisnces and varisnces in population 4. ﬂulooibc-
walmmdm-hmhmmdommﬂahuhmﬂuww

B (g(x))— E(g(=))—(n,—ma)loov,(z, g(=))-+ Wn(‘- '(‘»]I["'x(’) -I-VI',C‘!)]_

This quantity csn be oaloulated uulyhuuy for . many distributions and zegnuwn
surfaces g( - ), (e.g., normal distributions and exponential g( - )). In addition, if g is
expanded in a Taylor series, the residual bias in random or matched -unphl m-y be
wmmofmmmeuhofcmmnndmhbadupl- :

3.4 Modmmudmz Inth-mwmet!)ntyhutho‘
-mumwmmmmmz(mwx)hmmwm. :
butthtmhmgorwadjuhmnsum.dommpnﬂonﬁmbhw=xv
+W.Wh¢0mhmmofmmt AlinSoohmzlthomodnlIs

' m=m+ﬁ(x«—'m+¢u Ce )‘ l(3“)
.. T BT
mdthooxpeoudbluin("—ﬂ,)mtmdmnpluhumﬂh—idn baerraa

To cover situstions that arise in prastice-it is desirable to allow (i) uy and
Xy to be correlated, and (u)m,tobeabuudmumemcnt.mthlc(ﬂ:)swaéo
A Jdificulty arises at this point. Even under’ more restriotive assumptions' (uey, Xy
independent in, & given populstion and Bi(us) = 0), Lindley (1947) showed that the
regression of gy on z,s is not linear unless the cumulant genecating funotion .of the
1y is & multiple of that of the Xgy. Lindley’s results can- be axtended to give corres-
ponding conditions when the wy, X¢.are correlated. For simplicity wo assume that
thmuhndedmdxﬁmmuhﬁed.

(R N

" e Hinoat rogrossions of y on the fallible & will be written 15

o m==m+ﬁ‘(ar-w-—w)+tq P A

with E(e} [%5) = 0. Hence, from (au).._. L v
. : . = +°°'(m . N R AR Y]
r o M(”),o" + ’m ) P IR R POS S W YT

Unless cov(uX)< —o% We have {#°] < | 2|, the slope of -the line bemg damped
towarda sero. Tharunlhmﬂms.zimplymtmmdmﬂmph-wmph
matohed on 2 & regression-adjusted estimate §i—F—F"(2,—2,), wheve B° in & losat
uquruuhmteofthorogrem of y on. the fallihle x, changes the initial biss of
§,—# by the amount

IR I C R U I TR IR LR D vy

) -ﬁ‘ (11"‘”."‘"}"“"1) )

Since tho mltul biu of g,—g, in rmdom mplen is ﬂ(ql—q,). tho hu qf.s_ :_eg!-lon
adfusted catimate is R

A )(’h—’h)""ﬂ"z—"a,-

The last term on the right shows that- hiased measurernentd oan-mako an
pdditional contribution (+4-or —) to-the: resl@ual hins, “This ocontribution dissppears

al
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if the measurement biss is the aame in both populations, v; = v,. Under this condi-
tion the percent reduction in bias due to the regression adjustment is 1004°*/8. With
the same condition, the percent reduction in bisa of (§,~¥,) due to matohing on z is "
oasily seen to be

E [E-(ﬁ) ’ld
(93—m)

Thus with thia simple model for errors of measurement in X, their effects on
matching and adjustment are similar—namely to multiply the expected percent
reduction in bias by the ratio 3°/f, usually less than 1. With v, X uncorrelated,

this ratio is the quantity o} /o3 often called the reliability of the measurement z (Kendall
and Buokisnd, 1871)..

-

H this reliability, say (l.-{»—a')-l ia known, it can bo used to inflate the regres-
sion adjustment to have expectation p(qt-v,,), (Coohmn, 1968b). Thus form the
“‘corrected” regremsion adjusted cetimate h e

 fi=fh—(1+aB (2 —2,),
which is unbiased for n;r, under this model.

In simple éxamples in which Lindley’s conditions are not satisied, Cochran
(1970) found the regression of y on thoe fallible z to be mounotone but curved. A thorough

investigation of the effects of errors of measuroment would have to attack this case
aloo, S ' A TE oo .

3.5. WOM of the most common criticisms of
the conclusions drawn Ifom sn observational study is that they are erroneous beoause
the investigator failed to adjust or match for another confounding variable zy that
affects y. He may have been unaware of it, or failed to measure it, or guessed that
ita effect would be negligible. Even under simple models, however, investigation
of the effecta of such & variable on the initia] bias and on the performance of regression

and matching lesds to no crisp conclusion that either rebuts or confirms this eriticism
in any generality. ‘

We assume that gy has the same linear rogression on zy and z(y in both popu-
lations, namely

yy = m+ﬂ(ﬂ:—m)+7(zu—v:)+m- o (38.1)
Henoce, assuming z and z are the only confounding variables,
T1~Ty = Elyyy—yuy |2y = 24, zx! = 295) = (fr—Ha)— PN — M) — 7(”1“":)
and the mxtul bias in (g,—g,) from random samples is now
p(’h?"la)‘l‘?(’r—."l) - (3.5.2)
Similarly, the biaa in (§, —¢,) from samples matched on z is
B, — Em(Z))+7(vy— Eu(Zy)).
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Thus, depending on the signs of the parameters involved, the presenoe of sy in the model
may either inarease or decrease (perhaps to an unimportant asiount) the previous initial
biss f(g1—7,). Also, oven if |9, — 1| > |9, —Ba(®)| and |1 —n| > |y —Buity)],
the bias of (,—¢,) may be groater in matched than random ssmples.

Suppose now that z¢s has linear and paraliel regressions on x4 in the two popu-
lations : A : -

Zy = w+/\(zu-m)+m. «. (3.8.3)
Tlnn(aol) may be written '

R 7 =m+(ﬁ+7l)(=u—m+m+m - e (3.5.4)

In (3.5.4) we have returned to the model in Section 3.2 —same linear regression of
y on z in both populations. From Section 2.1, the expected change in bias of (fj, —#,)
due to regression adjustment on z in rendom samples or samples matched on z is
tharefore Tt e e, B T Ut e ) .

otey ptia

S IR A . (35.5)

.vhihthstdmtomﬁhing on z is
Dl —(ﬂ+w\)[t.(z.)-q.] . (3.5.6)
hrqudlw(auz)md(sse)hadmthomdwbm )
S e v = M=) . (887)

Thu.ndiutmentonzslonoremovosthoputoﬂhoonpndbmoommgftomzthn
is attributable to the linear regression of s on z. If 5 has identical linear regrossions
on z in both populations, 80 that (v,—Ayy) = (vy—Ay,), the residual bias is sero as
would be expoeted With matching in this situation, the residual bias is

(B+7A)n,— Bu(zy)]
- matohing being leas offective than regreasion.

With regressions of z oo = parallel but not identical, the final bias with either
regression or matohing counld be numerioally larger than the initial bias, and no simple -
statement about the relative merits of regression and matching holds under this
model. . . . . .

If the regressions of %4 on zyy are parallel but non-linear, investigation shows
that in large samples, regression and matohing remove the part of the bins due to
z that is attributable to the linear component of the regreasion of z on . -

4. MATOHTNG AND ADSUSTMERT BY SUBOLABSITICATION
4.0. TRe two mathods. When the z-variable is qualitative, e.g. sex (M, F),
it is natural {o regard suy male from populstion 1 as s match for any male from popu-
lation 2 with respect to z, or more generally, any two membess who fall in the same
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quelitative class a3 a match. This method is also used frequently when z is contin-
uous, o.g. age. We first divide the range of ages that are of interest into, say, speci-
fied 5-year classes 40-44, 45-49, eto. and regard any two persons in the same age class
as a match.

In matching to the sample from population 1, let n,5 be the number in sample
1 who fanmth subclass. From the reservoir from population 2, we seek the
same number ny = n,; in the j-th clsas. The average matched-pair difference,
Zn,g (§15—Ya)/n is of course the difference (§,—¢,) between the two matohed sample
means, thisa method being self-weighting. -

With random samples from the two populations, the alternative method of
adjustment by subclassification starts by classifying both samples into the respective
classes. The numbers nyy, ny will now usually differ. However, any weighted m.
Zw0y(F15~Fas), With Zwy = 1, will be subjeot only to the residual within-class binses
insofar as this z is ooncerned. In practice, different choices of the weights w, have
been used, e.g. sometimes weights directed at minimizing the variance of the weighted
difference. For comparison with matching we assume the weights w; = ny/n.

4.1.  Performance of the two methods. If sample 1 and reservoir 2 or sample
2 are random samples from their respective populations, as we have been sssuming
throughout, the n,y, #yy who turn up in the final sample are a random sample from
those in their population who fall in class j under eitber method-matohing or adjust-
ment. Consequently, with the same weights n y/n, the two methods have the same
expected regidual bias, (An exception is the oocasional case of adjustment from
m of equal sizes n; = n, = n, where we find ny = 0 in one or
more subclasses, so that subclasses have to be combined to some extent for applica-
tion of the ‘adjustment by subclassification’ method.)

With certain genuinely qualitative clessifications it may be reasonable to
assume that any two members of the same subclass are identical as regards the effeot
of this z on y. In this event, both matching and adjustment remove all the bias
due to z, there being no within-class bias. But many qualitative variables like socio-
economic status, degree of aggressiveness (mild, moderate, severe), represent an ordered
classification of an undetlying continuous variable z which at present we are unable
to measure accurately. Two members of the same subclass do not have identical
values of z in this event. For such cases, and for o variable like age, we assume the
model .

vy = it ulzyg) ey, i=1,2 5=1,2 ...,¢, o (42.1)
the regression of y on r being the same in both populations, with 7,—7, not depending

on the value of z. -

From (4.1.1) the percent reduction in the biaa of y due to adjustment by sub-
classification of u equals the percent reduction in the bias of v. If u(x) = z, this also
equals the percent reduction in the bias of x. If u(z) is a monotone function of z, a
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division of 2 into classes s the quantiles of z will also be & division of u into classcs at
the sams quantiles of 4. The perceat reduotions in biss of ¥ and = will not, however,
booqm.dmthmdcpendbothmthp'dlyﬁonpoinumdontheﬁoqmydmﬁ-
butions, which will differ for « and . The approach sdopted by Cochran (1968a) wasto -
start with the osse w(r) = z, with x normal, and then oconsider some non-normal
distributions of = to throw some light on the sitaation with w(z) monotone.

In subolamifioation, the range of z is divided into ¢ classes at division points
Tgy'Byy coey Tg. Iatfc(z)bcthsp.djnofzmthotwpopukhom Ths oversl] means
ofzu'o

w-=I¢!c(z)d¢

whdamﬁoj—thmbdwﬂnwm -

L A f dc(')"l"q. where Py = J Io(z)dﬁ

O4e1 g o

The initial expected bias in % is (§,—40. Afv rmasching o adjustmscs,
thowwhtodm«ndaﬁumointbtwoumph-u

£ (s, =2, v (4.1.8)

g W
Its average value, the expected residual biss, is -

:':'P,-,(q,,'-',;). S e (40.3)
Thilexpuauonmybouned in caloulating the expected paroentroduetimmhu

If fi(z), fyiz) differ only with respect to s single psrameter it is conveuient -

to give it the values 0 and © mpopuhhom 1 and ¢, mpootivaly Expression (4.1.3)
may be rewritten as i

‘ .
E“P 10)4(0) —94(8)}- o (61.4)
A first-term Taylor expansion about 0, sssuming © small, seems to wark well for biases

of practioal size, (Coohran, 1968a) and leads to a usefal result obtained in & related
problem. From (414)ﬁnexpeohd residual bmh&mnmshdy,expandmgsboui

O =0,
Ceiral® T T L s

thadmvttnebemgmmurodste—o Outhnoum-hmd ﬂwexpeotodsmhal
biss is

- POy 8)., . dP(O)
,gtraom(o)—t_':@m(.en._- ~8 £ [pdo) +q,(o)—#—] L 1)
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On subtracting (4.1.5) from (4.1.6), the expected proportional reduction in bias is
approximately

: dPy(©) ,dx(6) -
I w0 55" 5 . (417)

4

measured at @ = 0, where (0) = 9, = ’I:i Py O)my(O).

In particular, if fi(x) = f(z), fo(x) = flz— ©), the two distributions differing

only in their means, we have %:lud

8’ .
Py(@) = [fix—O)dz= [ flz)dr
: %5 s N

with
(]
‘%) = fixg-1)—fl=9)
at 8 = 0. From (4.1.7), the proportional reduction in bias becomes

Z 0N ) fleN). v (4.18)
If f(z) is the unit normsl distribution, (4.1.8) gives
élmsn_.)—ﬂz:)l'll’:(o) e (410)

for the proportional reduction in biss. Expression (4.1.9) has been studied in other
problems by J. Ogawa (1951) and by D. R. Cox (1957). Cox showed that it is 1 minus
the ratio of the average within-class variance to the original variance of x when =z is
normal. For our purpose, their calculations provide (i) the optimum choioes of the
Py, (ii) the resulting maximum percent reductions in bisa, and (iii) the percent reduc-
tions in bias with equal-sized classem Py = 1/c. For ¢ = 2—10, the maximum peroent
reductions are at most about 29, higher than those for equal Py, shown in
Table 4.2.1.

TABLE 4.2.1. PERCENT REDUCTIONS IN BIAS WITH EQUAL-SIZED
CLASS IN POPULATION 1, 3 NORMAL

no. of
subelasses 3 4 8 [ ] 8 10

% reduation 04% 9% B 00% 92% MY 9%

Caloulations (Cochran, 1868s) of the percent reductions when z follows 3
distributions, ¢ distributions and Beta distributions suggest that the above figures
can be used as a rough guide to what to expect in practice when the classification rep-
resents an underlying continnous z. To remove 809%, 90% and 959, of the initial
bias, evidently 3, 5, and 10 classes are required by this method.
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5. SIMPLE MULTIVARIATE GANERALITATIONS

8.1. Parallsl linear regressions. We now consider the cese of many z-
varisbles, say (z12, 29, ..., #)). Many of the previons results for one = variable
have obvious analagues for p 2-variables, with the p-veotars vy, By and Xy replacing the
scalars 7, Ay and 2. Howsver except in the cases where the sdjustment removes
all the bias, the conclusions are-even less abarp than in the univariate case.

The simplest multivariate case ocours when ¥ bas parallel linear regressions on
@ in both populations : _

PRI L ‘_‘“,:: e

v =F+E(??T;*fﬁjfvx, L e

The regrossions of y on z in the two por 'tiu‘n-mpusllel "“planes” with & constant
E(yy—'y.,lt,j‘-..— g} ='(ﬁ[—_;.)-'(m—"ld'- ' o (6.1.9)

Iz, .zw)mthomlyéopfuﬁndiﬁgmblu_,th:nmgdiﬁmnuhmm
ment difference, 71—7y From (8.1.1) it follows that conditionally on’the valuss of

the Zy in two samples, chosen either randomly oz only o the ‘basis of tho z-variables,
B = eyt -2y )
Thaexpoofadbiilofﬂ,—ﬂ,inrmdomumphlil R
- Bel§y— ) — (01— 7y) = BNy —Wy). : .. (51.9)
. L - QY - .o o
Notioe that sinoe @ and (1,-1,) are vectars the initial bias in (§,—¥) may be sero even
if P50 and (n,—my) 0. | . :
In random P, and matched P, samples, the bias is

- Balfi—g)—(ri—my) = pm—En(®)). o (.14
Formally, the percent reduction in biss is the natural extension of the univasiate result,
‘ 1mpg§,(z,1—ug'/p(q!-q,)'. e (6.1.5)

But the bias in matched samples may be M thm in random samples even with
Ew(®y) closer to v, in all components than w,is to n{e.g. (m—¥y) =(1, —1), (m—Bu(2y)
-({.i).'P=(1,l)).whlohgivoiniﬁllbiu0mdmimhodmple‘b.hl1. , _

Thewld;muduhmtou o
_ 4 = — )@ —2) . (6.1.6)
where B is the veotor duhmhdwnﬂﬁmu of y on z Under thh‘mow.
Eo(f) = 8, for f,, ﬁl,' B, _ Thus, for u.gy of theeo 8 and umple‘ either random or
matched on «, (5.1.1) and (5.1.6) show thiat the regressisn adjusted estimate is unbissed :
B R
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5.2, Non-parallel linear regressions. Aa in the univariate case, the regressions
of y on & may not be parallel. Assume the objective is to estimate (r,—7.) averaged
over some standard population with mean Z vector n, (6.g. % = W, if P, is considered
the standerd). From the multivariate version of (3.1.2), assuming z are the only
confounding variables we have

Ey(r,—73) = py— -+ By (Me—m) —Ps(na—y)". . (321
In random samples §,— 7, has expectation u, —u, and thus the initial bias is
—Pr(Me =) +Bs(Me—"4)"-
If n, = 9,, this initial bias becomes Py(n;—1,)"-

For random samples or ssmples sciected solely on
Ee(§,—§,) = Br—Hat By(®r—1y) — Pa(Zy— )’
= Efr,=Ts)+ By —Me) — Ba(By— M)’ .. (6.2.2)

If e = 1, and sample 1 is & random sample, the bias of §;— ¥, is By — Em(Z,))’ while
the initial bias is Py(n,—",)’- By comparison with (6.1.3) and (5.1.4) it follows that
when population 1 is chosen as the standard the effect of matching on bias reduction
is the same whether the regressions are parallel or not.

Now consider the regression estimate. Since (5.2.2) gives the conditional
bias of §,— §J, it would seem ressonable to estimate this bias using the usual within-
sample least squares estimates of @, and B, (and an estimate of n if necessary) and
forming the regression adjusted estimate :

gl_gl—éx(cl";]')’+§|(tg—;ll)' ... (5.2.3)
which is an unbissed estimate of Ei(r,—7;) under the linear regression model. If

e = W, and the first sample is random, this estimate is the natural extension of the
univariate result,

h—9:— B & —2y)".
If @ single summary of the effect of the treatment is not adequate, one could

examinc the estimated effect at various values of & using (5.2.3) where v, is replaced
by the values of  of interest.

5.3. Non-linear regressions. If y hes non-linear parallel regressions on z,
expressed by the function g(x), the initial bias, E,(g(#))— E,(g(x)), depends on the higher
moments of the distributions of  in P, snd P, (e.g. the covariance matrices &, and
Z,if Z is normal) as well as the means. The large sample limit of the pooled regression
adjusted estimate in random samples is

E\(g(x)) — Exg(@))— (my— )8, + 2,71 C7
where the k-th component of the p-vector C is cov, (£®g(x)) -+ covy( s Pg(x)).
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Thia quantity, as woll as similar quantities for the ocase of parallel, noun-linear
regressions, can be obtained analytically for many distributions and regression func-
tions. As far as we know, no work has been done on this problem or the more difficult
one involving matohed samples, in which case the distribution of 2 in matched samples
may not be aualytically tractable. Expanding g{(#) in s Taylor serics would enable
one to expand tho limiting residual biss in terms of the momeats of z in random sad
matohed ssmples (matched moments for the ngredon adjusted estimate based on
matohed peirs).

5.4. Errors of measwrement in x. Assume that y has parallel linear regres-
sions on the oorrecily measured mstohing veriables X, that X are the only confound-
ing variables, butthstmtnhlngmdregrunonad;uﬁmmtmdonoonthofsmbb
® = X4u. Henoe

’ ¥ = pu+P(Xyy—) +oy

mdthoiniﬁalﬁiulinmdommphl'uﬂq,—w'. If y has & linear regression on
the fallible = (6.g. y, X, & are multivariate normal), lot

Wy = g+ P (@y—mu—W) ¢y

where B(e}|zy) = 0, E(ty) = v, and §° = Z! cov(y, x), where , is the covariance
matrix of the = mblu

A rogression adjusted estimate based on random sasmples or samples mton
an Z chenges the initial biss by the amount —@°(n;—",—w+vy)’, and thus the biss
of a regression adjusted cstimate is

(B8 )W =) — B —Vy)'- w (5.41)

Some simple results can be obtained for the special case when v, = v, (squally

biased measurements in both populations), X and % sre uncosrelated, and the co-

variance matrix of % is proportionsl to the covarisnce matrix of X, say a®Ex. With

the latter two oonditions B° becomes (1--a%)~§. This result and v, = v, imply
that (5.4.1) becomes

. at ’
TFab B(n:—)

and the peroexit reduction in bias due to regression adjustment is
©100/(1+at),
s in the univariato case, since 1/(1-a%) correspands to the reliability, which we are

assuming to bo uniform for all varisbies. Under this same set of special conditions,
thopemmtndnctwnmbhoduotomﬁnhmgoncmldho

Py TURCRRRT R X
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Under models different from the above special case, clearcut results appesr
more difficult to obtain, and the percent reduction in bias for regreision adjustment
or matohing is not neceesarily between 0 and 100 percent even with v, = v,, X and
# uncorrelated, and all u¢ independent.

If one knew Z,, one could form a ‘‘corrected” regression-adjusted ostimate

_ that js in large samplee unbisaed for r,—r,. That is, assuming Z and u are uncorre-
lated, form

. —9,-27 B, prz,— 2y ... (5.4.2)
whero é. is the usual least ‘q\ul.‘;l e:ﬁnisfa of the regreasion of y on &, i:, 18 the esti-

mated within groub covariance matrix of z and By = & Z,—Zy. In the special case
when Ey = a*Ex, the ostimate aunphﬁu to t.ho sm.loguo of the univariate result if
a’ is known

' 91."_91—“(1 +¢')i‘

which is unbjased for Ty —Ty

IRERINE

5.5. Omitted confounding vanabla Auume that y has parallel regressions
on (2, 2) in the populations but that matching and/or adjustment is done on the
variables alone. Also assume that & and 2 are the only confounding variables. This
multivariate case is very similar to the univariate one of Section 3.5 and the multi-
variate analogs of all the formulas follow in an obvious manner. The basic result is
that if z has a linear regression on ®, # can be decomposed into 2, along ® and 2,
orthogonal to @, and adjustment on 2 is also adjustment on 2, but does not affect 2,

6. SOME MULTIVARIATE GENERALIZATIONS OF UNIVARIATE MATCHING METHODS

8.1. Caliper matching. Thus far we have not discussed any specific multi-
variate matching methods. The obvious extension of caliper matching is to seek in
reservoir 2 a match for each z,y such that |z~zl})| < ¢y for £ =1,2,...,p. This
method is used in practice, the difficulty being the large size of reservoir needed to
find matches.

The effect of this method on Em(#,—#,) could be calculated from univariate
results if all 22 were independently distributed in P, (this restriction will be relaxed
shortly). This follows because selection on zy; from P, would not affect the other x
variables, and so the percent reduction in the bias of the variate z(* under this method
would be the same as that under the univariate caliper matching |z —a49| < cs.
From these p percent reductions, the percent reduction in bias could be caloulated
for any y that is linear in the . For example, with p = 2 let B = 0.6 and o¥/o?
= } for 2, while B = 0.25 and o¥/od = 2 for z. Then if ¢, = 0.4V/(07+07)/2 and
¢y = 0.8v/(03+0%)/2, the reductions for ="’ and z'® from Table 2.3.1 are about 96%,
and 77%. That for £V 3, for instance, is about [(.96)(.5)+(.77)(.25)}/(.75) = 90%.
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With this approach, an attempt to select the ¢, from initial estimates of
A —# and oo} for 244 a0 that matching gives the same perosnt reduction in bine
for each z'* heas some appeal, particularly when matohing for more than oune y or when
it is uncertsin which z'#' are more important. Whenever this property does not hold,
matohing can snorease the biss for some y’s linear in &. For instanoce, in the preceding
example matching would increase the bias for zV'—2x'® whose bias is initially

. hgmlofm,manoﬁndopmdmﬂydhﬁbuhd
in Py, but if they are normally distributed (or more generally spherically distributed,
Demp-tor lﬂ'li)thanmnhn.nmphhwmformahm ‘

’x=zn where H'H = 2} v (6.1.1)

mnhthntthotmmd.pondeuﬂydmtﬂbuﬁodml’,. Hence, assuming (1) # normal
in Py, (8) » large simpls from P, so that H is ementislly known and all matches oan
be obtained, and (3) the caliper matching method defined above is used on the & = xH
variables, Table 3.3.1 can be used to oaloulate the percent reduction in biss for each
of the s, Also, from these p percent reductions in biss, the percent reduction in

bias can be caloulated for sny linear combinstion of the £, such as any z» or auy
y that is lineer in 2.

We conasider oaliper matohing on the transformed vuriablestoboa reasonable
goneralization of univariate oaliper matohing to use in practice. Caliper matching
on the criginal z variables defines & fixed p-dimensional “rectangular’ neighborhood
about' each 2,5 in which an acceptable match can be found. If caliper matching is
used on the z-variables, a neighborhood ia défined about each 24 that in general is
no longer s simple rectangle with sides perpendioular to the z-variables but & p-dimen-
sional parallelopiped whose sides are not perpendicular to the z-variables but to the
» linear combinations of the z-variables corresponding to the £. Since the original
choice of a rectangular neighborhood (e.g. rather than a ciroular one) was merely for
convenience, the neighbarhood defined by the & calipers ahould be just as eatisfactory.

6.2. COategorical maiching. Alnmdeumphofawmmonlyundmtoh-
ing method for which we can apply the univariste resulis, assume tho oategorioal
matching method of Bection 4 is used with cy categories for each matohing variable,
the final matoh for each momber of the first sample being chosen from the members
of the second sample lying in the same oategorios on sl variables. If this matohing
is performed on the transformed varisbles & given in (6.1.1), normaelity is assumed,
and the reservoir is large, Table 4.2.1 can be used to calonlate the percent reduotion
in bias of each z» in the final matched sample, and thus of each ' or any y linear in
#®. Actually Table 4.2.1 requires tho ratio of variances to be 1 and B moderate or
smell but could be extended to include more cases.

By adjusting the number of categories ussd per matching varisble z* as a
function of Fy(x'¥)— E(x'*") and var,(s®)/var,(z%) one oan obtain epproximately tho
same peroent reduction in biss of any y that is linear in .
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6.3. Discriminant maiching. As a final example of multivariate matching
raethods for which some of the previous univariate results are applicable, assume the
transformation in (6.1.1) will be used with H defined so that (3, — 9 )H o= (1,0, ..., 0).
Univariate matches are then obtained on z*), the best linear liscriminant with respect
to the E, inner product, as suggested by Rubin (1970). N+« with this method there
is no (mean) bias orthogonal to the discriminant (i.e Bz’ = Epx'®, k= 2, ..., p);
hence, if the  are normal in P, (so that z'» and (z**. ..., zP") are independent), the
percent reduction in bias for any linear function of the & equals the percent reduction
in bias of 21,

Tables 2.3.1, 2.5.1, 2.4.1, or 4.2.]1 can then be nsed to calculate the percent
reduction in bias for each z'*' when univariate caliper, mean, nearest available or cate-
gorical matching is used on the discriminant. In using these tables o}/of is the ratio
of the z'' variances in P, and P,, (2,—Z)E;' &, B3'(2, ~2,) (2, — 2,)E;'(2,—2,)',
and B is the number of standard deviations between the means of z'! in P, and
Py, (2, —2,)E3' (2, —2,)/V}(0i+03). Note that for many matching variables, this B
could be quite large even if the means of each matching variable are moderately
similar in P, and P,.

Discriminant matching has several appealing properties :

(1) it is easy to control the sizes of the final matched samples to be exactly
of size n;

(2) if @ is approximately normal in P, the method should do a good job of
reducing bias of any y linear in 2, even for a modest reservoir; thie follows
from an examination of Tables 2.4.1 and 2.5.1 ;

(3) if T is approximately normal in both P, and P, with &, ~ E,, pair match-
ing should do & good job of reducing the bias of any type of regreasion
when the reservoir is large and/or when combined with regression adjust-
ment.

The third point follows from the fact that if & is normal in P, and P, with &, = Z,,
orthogonal to the discriminant the distributions of the matching variables are identical
in Py and P, and unaffected by the matching. Hence, for any y, all bias is due to the
different distributions of the discriminant, and Tables 3.2.1-3.2.3 indicate that with
moderate r, matohing and regression adjustment remove much of this bias; also when
r—» oo the distributions of all matching variables will be the same in the matched
samples if nearest available matching is nsed and & is normal with £, = 2,

In addition, if one had to choose one linear combination of the = along which
a non-linear y is changing most rapidly, and thus on which to obtain close pair matches.
the discriminant seems reasonable since the matching variables were presumably
chosen not only because their distributions differ in P, and P, but also because they
ore correlated with y.

43




CONTROLLING BIAS IN OBBERVATIONAL STUDIES : A REVIEW

Of course, the joint -distributions of metching varisbles are not assured to
be similar in the matched n.mplu as they would be with pair matohes having tight
calipers or with a large number of categaries using the methods of Sections 6.1 or 8.2.
However, the ability to find tight pair matches on all matehing variables in a highly
multivariste situation seems dubious sven with moderately large r. The implications
of these points require study.

In practioe the discriminant is never known exactly. However, symmetry
srguments (Rubin, 10730) show that under normality in P,, matohing on the ssmple-
based diseriminant still yielda the samo poreen't reduction in expected bias for each z'*'.

6.4. Otlnrmdchaamdhodc Thoremt'okmda of problems with the
precoding matohing methods. First, for those utilising allthetrtudiﬁc\ﬂtbocontrol
the size of the final sample of matches. Thus with the caliper or oategorical methods
little is known about the actual reservoir sise needed to be confident of obtaining a
match for each member of the first sample, although an argument suggests that the
ratio of reservoir to sample size for p veriables i.id. in P, and P, is roughly the p-th
power of the ratio for one variable. The wse of oaliper mstohing to obtain matched
samples in & practical problem is described in Althauser and Rubin (1970).

When using mean and nearest available matohing on the discriminant it is easy
to oontrol the finsl matohed sample to have sige' n. However using discriminant
matohing, individual matohed pairs are not close on all variables and they rely on

specific distributional sssumptions to insure that the ssmpies are well-matohed, even
a8 r—p 00.

An alternative is to try to define matohing methode more anslogous to the
univaristo nesreet available matohing method using some definition of ‘“‘distance’”
between ®,; and ®,7. We might choose the » matoher by ordering the 2,4 in some way
(e.g. randomly) and then assigning us s match the nearest &, as defined by some multi-
variate distance measure. Such methods will be called nearest available metric
matching methods.

‘A eimple class of metrics is defined by sn inner product metrix, D, so that the
distanoe from &y to Ty is (®yy—yy) D(®yy—®yy). Rather obvious choices for D are
Z7! or X3! yielding the Mahalanobis (1927) distence between.x,; and ®, with respect
to either inner product. If Z,ocE, and @ is epherical, symmetry implies that
either Mahalanobia distance yields the same percent reduction in bias for esch 2.

' More generally, unpublished symmetry arguments (Rubin, 19730) show that
for  spherical and an ioner product metric, the same peroent reduction in bias is ob-
tained for each x'# if and only if

(1) The P; covariance matrices of ® orthogonal to the discriminants are

proportioxul : -

- = B g = =) = 0 [ Ba—g (=9 0170
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where s} = the variance of discriminant in Py = (3,—9,)E7(¥,~1n,)". (Note that this
implies the discriminanta with respeot to the P, and P, inner products are
proportional).

(2) The inner product matrix D used for matching is proportional to [E,-+

k(ny—9,)'(n,—n,)]-? with k& > 0 (if £ = 0 or ©, the inverse is & generalized inverse,
Rao, 1973).

The choice of & = o yields matching along the discriminant, & = 0 yields matching
in the space orthogonal to the discriminant, & = #7* yields matohing using the P,
Mshalanobis distance and & = cs3* yields matching using the P, Mahalanobis distance.
Symmetry arguments also show that under normality and condition (1), using the

sample estimates of £ _ and (n,— y,) gives the same pement reduction in biss for
each z®,

There are of courss other ways to define distance between z,, and :r,,, for
example by the Minkowaln metric

.
[tﬂ [zﬁ’—z}',’l'] " for some y > 0.
. -t . e e

Nothing seema to be known about the performsnoé of such matching methods.

A final class of methods that has not been explored might be described as
sample metric matohing. The simplest example would be to minimize distance between
the means 2, and 2, with respect to a metric. More interesting and robust against
non-linearity would be to minimize a measure of the difference between the empirical
distribution functions.

7.1. Summary comments. This review of methods of controlling bias in
observational studies has conoentrated on the performance of linear regression adjust-
ments and various matehing methods in reducing the initial bias of y due to differences
in the distribution of confounding variables, z, in two populations; this seemed to us
the most importsnt aspect in observationsl studies. We.have not considered the

effecta of these techniques on increasing precision, as becomes the focus of interest in
randomized experiments. : '

If the x variables are the only confounding variables, linear regreesion adjust-
ment on random samples removes all the initial bias when the (y, z) relations are
linear and parsllel. With only one z and parsilel monotonio curved relations of the
types examined, linear adjustment on random samples again removes essentially all
the bias if 0} = o} and the distributions of x are symmetric, but may perform very
erratioally if o}/o is not near 1, or if the distributions of x are asymmaetric.

Exocept in studies ffom past records, like the Cornell studies of the effectiveness
of seat belts in auto accidents (Kihlberg and Robinson, 1968) matching must usually be
performed before y has been measured. A drawback is the time :_l.nd frustration involved
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in seeking matches from the available reservoirs, ut this will be alleviated if eomputer
methods like the ‘nearest available’ are e gssﬂogg “The sppeal
of matohing lies in the simplicity of the comcept and the intuiti 40@35 tight
matching should work well whether the relation between y sod z is linear or curved.
In our studies with cne gﬁﬁgﬁggﬁus%:
;Igggaﬁvg.?&%gﬂa%ogg
relation with o = of and = symmetrio. Regression adjustment on matohed samples
orogvuorotlﬁeroruﬁgsm sbout as effective as regression on
random samples in the non-lincar oase. If the (y, = vz_vaoﬂ is non-linesr and o}
E\ﬁigrggmoivui&%aﬂ%
pairs performs best. 2382888?858&3-31?»2&5955
2 would be.helpful.

Overall, linear regression adjustment is ggg!!vﬂrlgg
ing alone when z is continuous and only s moderate reservoir is available. In o similar
comparison with more emphasis on precision, w:iaﬂogvgﬂgi
was more effootive than matching in this respect aleo. However, it appears that the

%%ggmtug&uﬁeg .!EEMEI n!ﬂ.-ﬁw
superior to either method alone. :

An obvious approsch not considered here i ooﬂ.w!uﬁng a..!mn-.

regression if this Ex!.-.bm t well in both lﬂm—l gisg 0 work on
this problem.

Indeed, this review has indicated numerous topics on which littls or n o work
has been done, Even with univariate z thess inolude resesrch on the sizes of reeer-
voirs needed to obtain caliper or oategorioal matches, on the effectivences of the

commonly used technique of incomplete matching in which members of semple 1
" that lack good matches ave discarded, and in methods of relaxing the restrictive as-

sumptions of linearity and normality as suggested in Section 3.3 (and Section 5.8 for
the multivariate case). For the case of & gSBS-%:moB t variable the only

. ﬂgrgsggoméwaﬁv

In Sections 6.1-6.4 we have suggested several multiv 5..8%- ».z.o
BPSEB.E-&:. 43.«_-88 is known sbout their effectiveness. In this conneo-
tion a survey of the commonly used methods of control, reservoir sises and number

&qgggﬁﬁioggﬁvogﬁgn?%&g
ressarch. :
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